Deep Reinforcement Learning: Das umfassende Praxis-Handbuch. Moderne Algorithmen für Chatbots, Robotik, diskrete Optimierung und Web-Automatisierung inkl. Multiagenten-Methoden (mitp Professional)

Artikelnummer: BG259322

14,87

Uitverkocht

Verkoop door: Bucher Garten

Verwerkingstijd:(Dag) 5-8

Uitverkocht

E-mail wanneer voorraad beschikbaar

  • Veilig betalen en bestellen

We zijn er om je een veilige en comfortabele winkelervaring te bezorgen. 

  • Gratis retourneren binnen 30 dagen

Je kunt je retourtransacties snel en gemakkelijk uitvoeren. 

  • Profiteer van de handigste verzendfaciliteiten

We geven je een trackingnummer zodat je je bestelling stap voor stap kunt volgen. 

  • 100% klanttevredenheid

Alle producten die we aanbieden hebben hoge kwaliteitsnormen. 

Gegarandeerd veilig afrekenen:

Verwante producten 

Beschrijving

Alle wichtigen Methoden und Algorithmen praxisnah erläutert mit Codebeispielen in PythonSelbstständig lernende Agenten programmieren für die Steuerung von Robotern, NLP in interaktiven Spielen, Chatbots und mehrDeep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen, moderne Explorationsverfahren u.v.m.Reinforcement Learning ist ein Teilgebiet des Machine Learnings. Hierbei werden selbstständig lernende Agenten programmiert, deren Lernvorgang ausschließlich durch ein Belohnungssystem und die Beobachtung der Umgebung gesteuert wird.In diesem umfassenden Praxis-Handbuch zeigt Ihnen Maxim Lapan, wie Sie diese zukunftsweisende Technologie in der Praxis einsetzen. Sie lernen, wie Sie passende RL-Methoden für Ihre Problemstellung auswählen und mithilfe von Deep-Learning-Methoden Agenten für verschiedene Aufgaben trainieren wie zum Beispiel für das Lösen eines Zauberwürfels, für Natural Language Processing in Microsofts TextWorld-Umgebung oder zur Realisierung moderner Chatbots.Alle Beispiele sind so gewählt, dass sie leicht verständlich sind und Sie diese auch ohne Zugang zu sehr großer Rechenleistung umsetzen können. Unter Einsatz von Python und der Bibliothek PyTorch ermöglicht Ihnen der Autor so einen einfachen und praktischen Einstieg in die Konzepte und Methoden des Reinforcement Learnings wie Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und viele mehr.Es werden grundlegende Kenntnisse in Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt.Aus dem Inhalt:Implementierung komplexer Deep-Learning-Modelle mit RL in tiefen neuronalen NetzenErmitteln der passenden RL-Methoden für verschiedene Problemstellungen, darunter DQN, Advantage Actor Critic, PPO, TRPO, DDPG, D4PG und mehrBauen und Trainieren eines kostengünstigen Hardware-RobotersNLP in Microsofts TextWorld-Umgebung für interaktive SpieleDiskrete Optimierung für das Lösen von ZauberwürfelnTrainieren von Agenten für Vier Gewinnt mittels AlphaGo ZeroDie neuesten Deep-RL-Methoden für ChatbotsModerne Explorationsverfahren wie verrauschte Netze und Netz-Destillation

Aanvullende informatie

Overzicht

auteur

Editie

2. überarbeitete Auflage 2020

Uitgever

mitp

Aantal pagina's

768

Publicatiedatum

2020-07-04

Verbindend

Perfect Paperback

ISBN13

9783747500361

ISBN10

3747500366